Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(3): 1875-1887, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38192325

RESUMO

In this contribution, a comprehensive study of nanostructured Bi2Te3 (BT) thermoelectric material was performed using a combination of synchrotron radiation-based techniques such as XAFS, and XRF, along with some other laboratory techniques such as XRD, XPS, FESEM, and HRTEM. This study aims to track the change in morphological, compositional, average and local/electronic structures of Bi2Te3 of two different phases; nanostructure (thin film) and nanopowders (NPs). Bi2Te3 nanomaterial was fabricated as pellets using zone melting process in a one step process, while Bi2Te3 thin film was deposited on sodalime glass substrate using a vacuum thermal evaporation technique. Synchrotron radiation-based Bi LIII-edge fluorescence-mode X-ray absorption fine structure (XAFS) technique was performed to probe locally the electronic and fine structures of BT thin film around the Bi atom, while transmission-mode XAFS was used for BT NPs distributed in the PVP matrix. The structural features of the collected Bi LIII XANES spectra of thin film and powder samples of BT are compared with the simulated XANES spectrum of BT calculated using FDMNES code at 5 Å cluster size. Combining different off-line structural characterization techniques (XRD, FESEM, XPS, and HRTEM), along with those of synchrotron radiation-based techniques (XAFS and XRF) is necessary for complementary and supported average crystal, chemical, morphological and local electronic structural analyses for unveiling the variation between Bi2Te3 in the nanostructure/thin film and nanopowder morphology, and then connecting between the structural features and functions of BT in two different morphologies. After that, we measured the Seebeck coefficient and the power factor values for both the BT nanopowder and thin film.

2.
Sci Rep ; 13(1): 13694, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608066

RESUMO

This work is an attempt to employ the electric arc furnace (EAF) slag as a by-product material to develop an alternative and environmentally friendly material for gamma-radiation protection applications such as in medical and industrial areas. For this purpose, different concentrations of micro-sized EAF slag (0, 20, 40, 60, 80, 100, 500, and 800 phr) were incorporated as fillers in the natural rubber (NR) matrix to produce the shielding composites. In addition, nano-sized EAF slag particles were prepared by using a high-energy ball milling technique to investigate the effect of particle size on the gamma-radiation shielding properties. The synthesized micro and nano EAF/NR composites were tested as protective materials against gamma-radiation by employing NaI(Tl) scintillation detector and standard radioactive point sources (152Eu, 137Cs, 133Ba, and 60Co). Different shielding parameters such as linear and mass attenuation coefficient, half value layer (HVL), tenth value layer, mean free path, effective atomic number (Zeff), and effective electron density (Neff) were determined to assess the radiation shielding capability of the EAF/NR composites. Furthermore, equivalent atomic number (Zeq) and the exposure buildup factor values for photon energy in the range from 0.015 to 15 MeV were also computed by Geometric Progression method. The experimental results of micro EAF/NR composites showed that at 121.78 keV, EAF0 composite (without EAF slag content) had the lowest µ value of 0.1695 cm-1, while the EAF800 composite (which was loaded with 800 phr of micro EAF slag) had the highest µ value of 0.2939 cm-1 at the same energy, which in turn decreases the HVL from 4.09 to 2.36 cm, respectively. Therefore, increasing the filler weight fractions of EAF slag in the NR matrix, increases the shielding properties of the composites. Moreover, the NR composite reinforced with 800 phr of nano EAF slag has better gamma-radiation shielding efficiency compared to that filled with 800 phr of micro EAF slag. The success of this work was to prepare a flexible, lightweight, low-cost, and lead-free material with better shielding capability.

4.
RSC Adv ; 13(14): 9154-9167, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36950705

RESUMO

GeSn compounds have made many interesting contributions in photodetectors (PDs) over the last ten years, as they have a detection limit in the NIR and mid-IR region. Sn incorporation in Ge alters the cut off wavelength. In the present article, p-i-n structures based on GeSn junctions were fabricated to serve as PDs. Arsine (As) is incorporated to develop n-GeSn compounds via a metal induced crystallization (MIC) process followed by i-GeSn on p-Si wafers. The impact of As and Sn doping on the strain characteristics of GeSn has been studied with high resolution transmission electron microscopy (HRTEM), X-ray diffraction and Raman spectroscopy analyses. The direct transitions and tuning of their band energies have been investigated using diffuse reflectance UV-vis spectroscopy and photoluminescence (PL). The barrier height and spectral responsivity have been controlled with incorporation of As. Variation of As incorporation into GeSn Compounds shifted the Raman peak and hence affected the strain in the Ge network. UV-vis spectroscopy showed that the direct transition energies are lowered as the Ge-As bonding increases as illustrated in Raman spectroscopy investigations. PL and UV-vis spectroscopy of annealed heterostructures at 500 °C showed that there are many transition peaks from the UV to the NIR region as result of oxygen vacancies in the Ge network. The calculated diode parameters showed that As incorporation leads to an increase of the height barrier and thus dark current. Spectral response measurements show that the prepared heterojunctions have spectral responses in near UV and NIR regions that gives them opportunities in UV and NIR photodetection-applications.

5.
RSC Adv ; 12(38): 24518-24554, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36128382

RESUMO

Heterostructures based on the GeSn nanocompound have high impact on integrated photonics devices. The promising feature of GeSn nanostructures is its direct bandgap transition that is a result of Sn incorporation in the Ge networks, forming a strained structure. Herein, we demonstrate a deep survey of the strain-controlling mechanisms in GeSn nanomaterials with different methodologies. Using either layer configurations, Sn incorporation, or by external stressors, the emission of different photonic and nanoelectronic applications is controlled. We find that strain engineering modulates the bandgap of GeSn active media to control the region of emission for light emitting diodes, lasing applications, and spectral response for photodetection applications within the mid-IR region of the spectrum and enhances the performance of MOSFETs. This gives GeSn nanocompounds the chance to contribute greatly to IoT physical devices and compete with unstable perovskite materials since GeSn materials can achieve a stable and more reliable performance.

6.
Sci Rep ; 12(1): 16307, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175524

RESUMO

Sodium ion batteries are favored in stationary and large scale power storage due to their low cost and nontoxicity. As the lithium is replaced with sodium due to the cost motive, a cheap processing method is needed to maintain the cell price as low as possible. We report an ultra-fast synthesis method that utilizes the high microwave absorbance of silicon carbide content in rice straw ash. Amorphous/maricite mixtures of sodium iron phosphates-carbon composites (NaFePO4-C) are synthesized, crystallized, and carbon coated using one-step microwave heating. The sodium ion electroactive composites are prepared using different microwave heating durations ranging from 30 to 100 s. High purity inert gases are not needed during synthesis, processing, and even at cell assembly. The materials are characterized by elemental analysis techniques, X-ray diffraction (XRD), scanning/transmission electron microscope (SEM/TEM), and Raman spectroscopy. The electrochemical performance of the synthesized nanocomposites is examined as sodium ion battery cathode and as symmetric supercapacitors. The optimum synthesis time is 60 s for the application as sodium ion batteries and as a supercapacitor. The maximum specific capacity is 108.4 mA h g-1 at 0.2 C in the case of using it as a battery cathode. While the capacitance is 86 F g-1 at 0.5 A g-1 as a supercapacitor. The capacity retention is 92.85% after 40 cycles at 0.2 C as sodium ion battery electrode. For supercapacitor, the capacity retention is 81.7% after 1000 cycles.

7.
ACS Omega ; 7(19): 16757-16765, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35601296

RESUMO

Nanocrystalline TiO2 and reduced graphene oxide (rGO) materials have been synthesized by a simple and low-cost microwave-assisted hydrothermal method and applied in dye-sensitized solar cells (DSSCs) as photoactive and metal-free counter electrodes, respectively. Different TiO2 nanocrystalline materials have been synthesized via the acid hydrolysis sol-gel method, followed by microwave hydrothermal treatment at 210 °C and 300 psi and at different microwave irradiation times (20, 30, 45, and 60 min) instead of the usual hydrothermal time of 12 h. The properties of the produced mesoporous nanocrystalline TiO2 are investigated in terms of their morphology, crystal structure, optical properties, and surface area behavior using relevant characterization techniques. Maximum specific surface area values (S BET) of 97.77 and 100.7 m2 g-1 are measured for TiO2, with the average crystallite sizes of 18.6 and 17.5 nm, at microwave irradiation times of 30 and 45 min, respectively. Different rGO samples have been prepared by the modified Hummers method, followed by microwave-assisted reduction at a temperature of 200 °C and pressure of 300 psi at different microwave irradiation times (3, 17, and 25 min). The physicochemical properties of the different rGO samples in terms of morphology, crystallization, and optical properties are characterized by TEM, XRD, and Raman spectroscopic analysis. The current density J sc of the fabricated DSSCs based on TiO2 as the photoelectrode and rGO as the counter electrode compared with DSSCs based on Pt as the counter electrode is found to be 11.25 and 9.28 mA cm-2, respectively. Although the overall power efficiency of the fabricated DSSCs based on rGO as the counter electrode is lower than that based on the Pt electrode, the former still exhibits promising prospects for replacing Pt with low-cost metal-free carbon-based DSSCs.

8.
Sci Rep ; 11(1): 22543, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799620

RESUMO

Microbial contamination is one of the major dreadful problems that raises hospitalization, morbidity and mortality rates globally, which subsequently obstructs socio-economic progress. The continuous misuse and overutilization of antibiotics participate mainly in the emergence of microbial resistance. To circumvent such a multidrug-resistance phenomenon, well-defined nanocomposite structures have recently been employed. In the current study, a facile, novel and cost-effective approach was applied to synthesize Ag@Ag2O core-shell nanocomposites (NCs) via chemical method. Several techniques were used to determine the structural, morphological, and optical characteristics of the as-prepared NCs. XRD, Raman, FTIR, XPS and SAED analysis revealed a crystalline hybrid structure of Ag core and Ag2O shell. Besides, SEM and HRTEM micrographs depicted spherical nanoparticles with size range of 19-60 nm. Additionally, zeta potential and fluorescence spectra illustrated aggregated nature of Ag@Ag2O NCs by - 5.34 mV with fluorescence emission peak at 498 nm. Ag@Ag2O NCs exhibited higher antimicrobial, antibiofilm, and algicidal activity in dose-dependent behavior. Interestingly, a remarkable mycocidal potency by 50 µg of Ag@Ag2O NCs against Candida albican; implying promising activity against COVID-19 white fungal post-infections. Through assessing cytotoxicity, Ag@Ag2O NCs exhibited higher safety against Vero cells than bulk silver nitrate by more than 100-fold.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Nanocompostos/química , Óxidos/química , Compostos de Prata/química , Animais , Anti-Infecciosos/síntese química , Candida albicans/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chlorella vulgaris/efeitos dos fármacos , Chlorocebus aethiops , Desinfetantes/síntese química , Desinfetantes/química , Desinfetantes/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Nanopartículas Metálicas/química , Óxidos/síntese química , Pseudomonas aeruginosa/efeitos dos fármacos , Compostos de Prata/síntese química , Nitrato de Prata/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Células Vero
9.
Micromachines (Basel) ; 12(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34683292

RESUMO

In this study, we investigate a novel simple methodology to synthesize gallium nitride nanoparticles (GaN) that could be used as an active layer in light-emitting diode (LED) devices by combining the crystal growth technique with thermal vacuum evaporation. The characterizations of structural and optical properties are carried out with different techniques to investigate the main featured properties of GaN bulk alloys and their thin films. Field emission scanning electron microscopy (FESEM) delivered images in bulk structures that show micro rods with an average diameter of 0.98 µm, while their thin films show regular microspheres with diameter ranging from 0.13 µm to 0.22 µm. X-ray diffraction (XRD) of the bulk crystals reveals a combination of 20% hexagonal and 80% cubic structure, and in thin films, it shows the orientation of the hexagonal phase. For HRTEM, these microspheres are composed of nanoparticles of GaN with diameter of 8-10 nm. For the optical behavior, a band gap of about from 2.33 to 3.1 eV is observed in both cases as alloy and thin film, respectively. This article highlights the fabrication of the major cubic structure of GaN bulk alloy with its thin films of high electron lifetime.

10.
ACS Omega ; 6(36): 23090-23099, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34549110

RESUMO

In this work, we produced high yield quantized nitrogen-doped graphene nanodiscs from waste tires via a one-step process under high pressure and temperature using a homemade stainless steel reactor without using any chemical additives. Reaction temperature played a vital role in the preparation process. By increasing the temperature to a level between 600 and 1100 °C, the carbon atoms rearranged themselves to build a mixed graphene structure of nanodiscs and quantum dots. The obtained graphene exhibits excellent capacitance and long life cycle stability as an electrode in supercapacitor devices. The specific capacitance rose to 161.24 F/g with a high power density of 733.3 W/kg, and the energy density reached 27.1 Wh/kg. The finding of this work is not only to provide a solution to get rid of hazardous materials but also to give awareness of turning these hazardous materials into a cost-effective and economical nanomaterial; in another, this approach sheds light on the promising power uses of waste.

11.
ACS Omega ; 6(20): 13077-13086, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34056457

RESUMO

In this article, we investigate the application of polythiophene (PT), polythiophene with embedded gold nanoparticles (PT-Au), and polythiophene with embedded palladium nanoparticles (PT-Pd) via the spin coating technique on the rear contact of single-crystalline silicon solar cells. Several layers of coating (up to four layers) were applied, followed by a simple heat treatment at 70 °C for 30 min. The morphology, particles distribution in the polymer, and crystal structure of the colloid PT, PT-Au, and PT-Pd were characterized by transmission electron microscopy (TEM). Optical characteristics of the polymer and nanoparticles embedded in the polymers exhibited high absorption in the near-UV region, and a plasmonic peak at around 580 nm is observed. The calculated energy gap ranged from 2.65 eV (PT-Pd 5%) to 2.9 eV (PT) and 3.05 eV (PT-Au 5%). Scanning electron microscopy (SEM) images of the successive layers show an increase in the density and thickness of the PT particles with increasing number of coating layers, up to 12 µm for four layers of PT. Devices were characterized under dark conditions exhibiting variations in the ideality factor and series and shunt resistances with different coating layers. The silicon solar cells were characterized by measuring quantum efficiency, photoconversion efficiency (PCE), fill factor, and series and shunt resistances before and after coating. The coating was found to reduce the series resistance and to increase the efficiency of the cell by up to 7.25% for the PT-Au5% layers.

12.
ACS Omega ; 5(42): 27633-27644, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33134727

RESUMO

Metal-induced crystallization of amorphous silicon is a promising technique for developing high-quality and cheap optoelectronic devices. Many attempts tried to enhance the crystal growth of polycrystalline silicon via aluminum-induced crystallization at different annealing times and temperatures. In this research, thin films of aluminum/silicon (Al/Si) and aluminum/silicon/tin (Al/Si/Sn) layers were fabricated using the thermal evaporation technique with a designed wire tungsten boat. MIC of a:Si was detected at annealing temperature of 500 °C using X-ray diffraction, Raman spectroscopy, and field emission scanning electron microscopy. The crystallinity of the films is enhanced by increasing the annealing time. In the three-layer thin films, MIC occurs because of the existence of both Al and Sn metals forming highly oriented (111) silicon. Nanocrystalline silicon with dimensions ranged from 5 to 300 nm is produced depending on the structure and time duration. Low surface reflection and the variation of the optical energy gap were detected using UV-vis spectroscopy. Higher conductivities of Al/Si/Sn films than Al/Si films were observed because of the presence of both metals. Highly rectifying ideal diode manufactured from Al/Si/Sn on the FTO layer annealed for 24 h indicates that this device has a great opportunity for the optoelectronic device applications.

13.
Sci Rep ; 10(1): 3491, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32103077

RESUMO

Bacterial nanocellulose (BNC) has been drawing enormous attention because of its versatile properties. Herein, we shed light on the BNC production by a novel bacterial isolate (MD1) utilizing various agro-industrial wastes. Using 16S rRNA nucleotide sequences, the isolate was identified as Komagataeibacter saccharivorans MD1. For the first time, BNC synthesis by K. saccharivorans MD1 was investigated utilizing wastes of palm date, fig, and sugarcane molasses along with glucose on the Hestrin-Schramm (HS) medium as a control. After incubation for 168 h, the highest BNC yield was perceived on the molasses medium recording 3.9 g/L with an initial concentration of (v/v) 10%. The physicochemical characteristics of the BNC sheets were inspected adopting field-emission scanning electron microscope (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) analysis. The FESEM characterization revealed no impact of the wastes on either fiber diameter or the branching scheme, whereas the AFM depicted a BNC film with minimal roughness was generated using date wastes. Furthermore, a high crystallinity index was estimated by XRD up to 94% for the date wastes-derived BNC, while the FTIR analyses exhibited very similar profiles for all BNC films. Additionally, mechanical characteristics and water holding capacity of the produced BNCs were studied. Our findings substantiated that expensive substrates could be exchanged by agro-industrial wastes for BNC production conserving its remarkable physical and microstructural properties.


Assuntos
Acetobacteraceae/metabolismo , Celulose/biossíntese , Resíduos Industriais , Nanoestruturas/química , Acetobacteraceae/classificação , Acetobacteraceae/genética , Acetobacteraceae/isolamento & purificação , Técnicas de Cultura Celular por Lotes , Celulose/química , Meios de Cultura/química , Módulo de Elasticidade , Microscopia de Força Atômica , Filogenia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...